
Oracle® Banking Enterprise Default
Management
Secure Development Guide
Release 2.11.0.0.0
F36758-01

December 2020

Oracle Banking Enterprise Default Management Secure Development Guide, Release 2.11.0.0.0

F36758-01

Copyright © 2017, 2020, Oracle and/or its affiliates.

Oracle and Java are registered trademarksof Oracle and/or its affiliates. Other namesmaybe trademarksof their
respective owners.

Intel and Intel Inside are trademarksor registered trademarksof IntelCorporation. All SPARC trademarksare
used under license and are trademarksor registered trademarksof SPARC International, Inc. AMD, Epyc, and
the AMD logo are trademarksor registered trademarksof AdvancedMicro Devices. UNIX is a registered
trademarkof TheOpenGroup.

This software and related documentation are provided under a license agreement containing restrictionson use
and disclosure and are protected by intellectual property laws. Except asexpressly permitted in your license
agreement or allowed by law, youmaynot use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish or display anypart, in any form, or byanymeans. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find anyerrors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including anyoperating system, integrated software, any
programsembedded, installed or activated on delivered hardware, andmodificationsof such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed byU.S. Government end users
are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable FederalAcquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including anyoperating system, integrated software, anyprogramsembedded,
installed or activated on delivered hardware, andmodificationsof such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license
contained in the applicable contract. The termsgoverning the U.S. Government’s use of Oracle cloud servicesare
defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of informationmanagement applications. It is
not developed or intended for use in any inherently dangerousapplications, including applications that maycreate
a risk of personal injury. If you use this software or hardware in dangerousapplications, then you shall be
responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for anydamagescaused byuse of this software or
hardware in dangerousapplications.

This software or hardware and documentationmayprovide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
allwarranties of any kind with respect to third-party content, products, and servicesunlessotherwise set forth in
an applicable agreement between you andOracle. Oracle Corporation and its affiliateswill not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you andOracle.

Contents

Preface 6

Audience 6

Documentation Accessibility 6

Organization of the Guide 6

Related Documents 6

Conventions 7

1 About This Guide 9

2 Overview 11

3 Common Terms 13

4 Security in API Development 15

4.1 Credential Verification 15

4.1.1 Sharing the token 15

4.1.2 Preparing the token 15

4.2 Invocation of API 17

4.2.1 Establishing the context 18

4.2.2 Establishing the user session continuity and detecting fraud 20

3

List of Figures

Figure 4–1 Third-party Integration for 2FA 21

Figure 4–2 Third-party Integration for 2FA + Delay 22

4

List of Tables

Table 3–1 Common terms 13

Table 4–1 Variables 21

Table 4–2 Error Codes 22

5

Preface

The Secure Development Guide provides recommendations for secure usage of extensible components.

This preface contains the following topics:

n Audience

n Documentation Accessibility

n Organization of the Guide

n Related Documents

n Conventions

Audience
This guide is intended for Oracle partners and any users who want to extend the product’s components.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support throughMy Oracle Support. For information, visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#info or visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs if you are hearing impaired.

Organization of the Guide
This document contains:

Chapter 1 About This Guide

This chapter provides details about the applicability of this guide.

Chapter 2 Overview

This chapter presents an overview of the secure usage of extensible components.

Chapter 3 Common Terms

This chapter provides a list of common terms used in this guide along with their descriptions.

Chapter 4 Security in API Development

This chapter explains the security features offered by the product in API development.

Related Documents
Formore information, see the following documentation:

6

http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/support/index.html#info
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs

n For installation and configuration information, see the Oracle Banking Enterprise Default Management
Localization Installation Guide - Silent Installation guide.

n For the complete list of licensed products and the third-party licenses included with the license, see the
Oracle Banking Enterprise Default Management Licensing Guide.

n For information related to setting up a bank or a branch, and other operational and administrative
functions, see the Oracle Banking Enterprise Default Management Administrator Guide.

n For information related to customization and extension, see the Oracle Banking Enterprise Default
Management Extensibility Guides for HOST and UI.

n For a comprehensive overview of security, see the Oracle Banking Enterprise Default Management
Security Guide.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

7

8 | Oracle Banking Enterprise Default Management Secure Development Guide

1 About This Guide

This guide is applicable for the following products:

n Oracle Banking Platform

n Oracle Banking Enterprise Default Management

References to Oracle Banking Platform or OBP in this guide apply to all the abovementioned products.

1 About This Guide | 9

10 | Oracle Banking Enterprise Default Management Secure Development Guide

2 Overview

Oracle Banking Platform (OBP) leverages onOracle Platform Security Services to protect for authentication,
authorization, auditing, and role and credential management.

Many features in Oracle Application Development Framework (ADF), such as bounded task flows, that are
not primarily designed as a security feature, are used by OBP to protect against known security threats.

This guide provides recommendations for secure usage of OBP’s extensible components.

2 Overview | 11

12 | Oracle Banking Enterprise Default Management Secure Development Guide

3 Common Terms

The following table presents the common terms used in this guide along with their descriptions.

Term Description

Transaction

Any activity done using SPI with intention of change in Oracle Banking
Platform is treated as single transaction. The effect of a transaction
leads to state change of the entity (likemaintenance) or financial change.
Being SOA driven, Oracle Banking Platform is stateless. Each
transaction is unaware of previous transaction and is atomic in that
respect. The client will have to ensure the continuity of information or
state if there is a requirement to hold state betweenmultiple user
interactions.

Approval

It signifies the process of making an entity change effective in the
system. Authorization is performed by the supervisor. It can be done for
bothmaintenance as well as financial transactions. If the response of the
API indicates that authorization is required due to the role assigned to the
user, then the client must use Approval Workflow processes to authorize
the transaction.

One Factor Authentication
(1FA)

This is a special case when customers have to again provide their
consent, even though the transaction is being done by customers
themselves within the capacity of their assigned role. The client will have
to capture the consent and call a specific service for completion of the
transaction.

Two Factor Authentication
(2FA)

This is a special case of authorization where the customer related to the
entity has to approve the transaction, even though it is being done
through role of authorized system user. The client will have to invoke
additional APIs to procure the customer's consent to the transaction.
This can be done by sending Short Messaging Service (SMS) to the
registered cellular device in the system asking for confirmation. This
approach is also known as One Time Password (OTP) feature. In this
case, the end-user provides the OTP to the system to complete the
transaction. The client should havemechanisms to send and accept the
OTP. Once authenticity is confirmed, then the client must call specific
API in the Oracle Banking Platform to complete the transaction.

Table 3–1 Common terms

3 Common Terms | 13

14 | Oracle Banking Enterprise Default Management Secure Development Guide

4 Security in API Development

The basic steps to call an API are as follows:

1. Verify credentials

2. Invoke the desired API

These steps are explained in detail in the following sections.

4.1 Credential Verification
Oracle Banking Platform authenticates users by verifying credentials against an LDAP credential store.
Clients must use SAML 2.0 for verification.

SAML 2.0 is an XML-based protocol that uses security tokens containing assertions to pass information
about a principal (usually an end user) between a SAML authority, that is an identity provider, and a web
service, that is a service provider. SAML 2.0 enables web-based authentication and authorization scenarios
including single sign-on (SSO).

The client will have to pass the SAML compliant token by implementing SAML interface. This will add the
token to the SOAP header.

Non-weblogic clients must use the Username Token Policy. Username Token is a signed supporting token
that can be used to send the username or password to the other end. The recipient can check whether the
request has come from a valid user. When using a Username Token based security policy, transport level
security should be implemented. Using HTTPS, the client can communicate through a pre-established secure
tunnel. So the confidentiality and the integrity of themessages are protected. Please note that the username
must be registered in the LDAP server for the correct level of access or role.

Weblogic clients can implement SAML Token Policy. In this case, the weblogic server can be configured to
communicate with identity authority server, and the intercommunication between the client and application
can just share a token, instead transmitting username and password.

4.1.1 Sharing the token
In either case, the SOAP request has to bemodified through SOAP Handler for adding the token to the
header. This can be done by creating a custom SOAP request handler and adding it to the handler chain.

CustomSOAPHandler customHandler = new CustomSOAPHandler();
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(customHandler);
((BindingProvider)clientProcess).getBinding().setHandlerChain
(handlerChain);

Refer javax.xml.ws.Binding.setHandlerChain(List<Handler> chain)

4.1.2 Preparing the token
In the CustomSOAPHandler, themethod handleMessage(SOAPMessageContext context) is implemented
as shown below for Username Token policy.

String AUTH_PREFIX = "wsse";

4 Security in API Development | 15

4.1 Credential Verification

String AUTH_NS = "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd";

SOAPEnvelope envelope = context.getMessage().getSOAPPart
().getEnvelope();
SOAPFactory soapFactory = SOAPFactory.newInstance();
SOAPElement wsSecHeaderElm = soapFactory.createElement("Security",
AUTH_PREFIX, AUTH_NS);
Name wsSecHdrMustUnderstandAttr = soapFactory.createName
("mustUnderstand",
"S",
AUTH_NS);
wsSecHeaderElm.addAttribute(wsSecHdrMustUnderstandAttr, "1");
SOAPElement userNameTokenElm = soapFactory.createElement
("UsernameToken", AUTH_PREFIX, AUTH_NS);
Name userNameTokenIdName = soapFactory.createName("id", "wsu",
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd");
userNameTokenElm.addAttribute(userNameTokenIdName, "UsernameToken-
ORbTEPzNsEMDfzrI9sscVA22");
SOAPElement userNameElm = soapFactory.createElement("Username",
AUTH_PREFIX, AUTH_NS);

String username = getSessionUserName();
userNameElm.addTextNode(username);

SOAPElement passwdElm = soapFactory.createElement("Password", AUTH_
PREFIX, AUTH_NS);
Name passwdTypeAttr = soapFactory.createName("Type");
passwdElm.addAttribute(passwdTypeAttr, "http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#PasswordText");

String password = getSessionUserPassword();
passwdElm.addTextNode(password);

userNameTokenElm.addChildElement(userNameElm);
userNameTokenElm.addChildElement(passwdElm);
wsSecHeaderElm.addChildElement(userNameTokenElm);
if (envelope.getHeader() == null) {
SOAPHeader sh = envelope.addHeader();
sh.addChildElement(wsSecHeaderElm);
} else {
SOAPHeader sh = envelope.getHeader();
sh.addChildElement(wsSecHeaderElm);
}

The SOAP Request looks like this:

16 | Oracle Banking Enterprise Default Management Secure Development Guide

4.2 Invocation of API

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:dda="http://core.account.service.dda.app.fc.ofss.com/DDAInqu
iryApplicationService" xmlns:con="http://context.app.fc.ofss.com"
xmlns:exc="http://exception.infra.fc.ofss.com"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:soap="soap">
<soapenv:Header>
<wsse:Security soap:mustUnderstand="1">
<wsse:UsernameToken wsu:Id="UsernameToken-1">
<wsse:Username>devuser01</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-
1.0#PasswordText">welcome1</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<dda:fetchAccountDetailsDDAInquiry>
<!--Optional:-->
<dda:sessionContext>
<con:bankCode>08</con:bankCode>
<con:targetUnit>UBank_1</con:targetUnit>
<con:transactionBranch>082991</con:transactionBranch>
<con:userId>devuser01</con:userId>
</dda:sessionContext>
<dda:accountId>0000000000008590</dda:accountId>
</dda:fetchAccountDetailsDDAInquiry>
</soapenv:Body>
</soapenv:Envelope>

4.2 Invocation of API
A typical API signature will follow the convention as shown below:

public SomeAPIResponse com.ofss.fc.app.service.method
(SessionContext sessionContext, Object... input) throws
FatalException

OR

public TransactionStatus com.ofss.fc.app.service.method
(SessionContext sessionContext, Object... input) throws
FatalException

The clients will call the APIs multiple times during one session. Since the nature of the transactions will be
financial, it will be necessary to ensure security, integrity and reliability in the various inter system

4 Security in API Development | 17

4.2 Invocation of API

interactions. In such cases, the following concepts are important andmust be followed for proper interaction
with OBP.

4.2.1 Establishing the context
com.ofss.fc.app.context.SessionContext:

This entity captures the basic information about the interaction being initiated with the system. This
information is used by the system for various purposes:

n For establishing identity

n For establishing target unit

n For establishing the business dates to be used

n For capturing referential information with external system or caller

n For capturing the authorization related business information

n For establishing the behavior of the interaction

Once the processing of the request starts, the system fills in more contextual information which has not been
supplied by the caller. This context is then shared between all the APIs which are invoked during the
interaction. Specific relevance of the information has been discussed below:

n Identity

The caller of the systemmust present the user ID which will be used for the interaction.This user ID
will also be logged for internal audit purposes, andmust be a valid. The system will validate the user ID
with internal identity management systems. It is also important to note themedium or channel through
which this interaction is happening. This allows the system to behave differently in terms of handling
error conditions depending on the configuration. These attributes are of relevance here:

l userId: Mandatory

l channel: Optional, Defaults to BRN

l enterpriseRole: Derived, For internal usage only

l userLocale: Optional, Defaults to en_US

n Authorization Information

Sometimes, an interaction requires supervisor authorization. In such cases, the transaction has to re-
presented with authorization related information such as, supervisor's identity, the reasons due to
which authorization is being given, and the reasons for which authorization has been requested. These
attributes are of relevance here:

l approvalContext: Conditional Mandatory (only for authorization)

l authorizationReason: Conditional Mandatory (only for authorization)

l overridenWarnings: Optional

n Behavior

It is often required to interact with the system under controlled conditions. For example, for simulation,
it is required to rollback the effect after completing the entire interaction. In some other cases, the
systemmay behave differently for different API calls. These attributes are of relevance here:

18 | Oracle Banking Enterprise Default Management Secure Development Guide

4.2 Invocation of API

l serviceCallContextType: Optional, defaults to ServiceCallContextType.NORMAL

l serviceCode: Optional

l channel: Optional

Sample code to create the SessionContext is given below:

/**
* Method to configure the SessionContext
*
* @return SessionContext
*/
protected SessionContext getSessionContext() {

SessionContext sessionContext = new SessionContext();

sessionContext.setBankCode(getStringValue
("sessionContext.bankCode")); sessionContext.setTransactionBranch
(getStringValue("sessionContext.transactionBranch"));
sessionContext.setUserId(getStringValue("sessionContext.userId"));
sessionContext.setChannel(getStringValue
("sessionContext.channel"));
sessionContext.setTargetUnit(getStringValue
("sessionContext.targetUnit")); sessionContext.setPostingDateText
(getStringValue("sessionContext.postingDate"));
return sessionContext;

}
com.ofss.fc.app.context.ApprovalContext:

This class represents the approval related information. When a transaction is approved by a supervisor, it is
done against a set of reply codes that was presented by the system during initial execution. These are
captured as approvedOverrides. When an approval is given, it is accompanied with reasons. These are
captured in approvalReasons.

com.ofss.fc.enumeration.ServiceCallContextType:

This enumeration defines themode or behavioral constraint under which the system has to action upon the
service request. To rollback forcefully, the client must send VALIDATE.

Sample JUnit code for invocation of an API is given below:

public final void testDebitWithLedger() {

try {
SessionContext sessionContext = getSessionContext();
TransactionStatus transactionStatus =
applicationService.debitWthLedger(sessionContext,
getStringValue("accountId"),
new MoneyDTO(getBigDecimalValue("Amount"),
getStringValue("Currency")),
getStringValue("ledgerCode"),
null);

4 Security in API Development | 19

4.2 Invocation of API

if (transactionStatus.getReplyCode() == 30) {
System.out.println("Transaction requires authorization,will be
logged in worklist for approval");
return;
} else if (transactionStatus.getReplyCode() != Long.parseLong
(ResponseCodeType.SUCCESS.getValue())) {
fail();
}
if (transactionStatus.getReplyCode() == 40) {
try {
SelfApprovalApplicationService applicationService = new
SelfApprovalApplicationService();
WorkItemApprovalRequestDTO requestDTO = new
WorkItemApprovalRequestDTO();
requestDTO.setWorkFlowId
(transactionStatus.getInternalReferenceNumber());
requestDTO.setComment(getUserApprovalComments());
WorkItemApprovalResponse response =
applicationService.inquireAndApproveWorkItem(sessionContext
,requestDTO);

if (response.getStatus().getReplyCode() == 30) {
System.out.println("Transaction requires authorization,will be
logged in worklist for approval");
return;
} else if (response.getStatus().getReplyCode() != Long.parseLong
(ResponseCodeType.SUCCESS.getValue())) {
fail();
}

} catch (FatalException fatalException) {
dumpFatalException("DDATransactionApplicationServiceJUnit",
"testDebitWithLedger", fatalException);
fail();
}
}
return;
} catch (FatalException fatalException) {
dumpFatalException("DDATransactionApplicationServiceJUnit",
"testDebitWithLedger", fatalException);
fail();
}
}

4.2.2 Establishing the user session continuity and detecting fraud
Weneed to establish the continuity of user interaction across multiple interactions between the client and
system. This is done for various instances where fraud assertion is required before the transaction is

20 | Oracle Banking Enterprise Default Management Secure Development Guide

4.2 Invocation of API

submitted for final completion.

The figure below depicts the second-factor authentication sequence.

Figure 4–1 Third-party Integration for 2FA

In the above figure, steps 2 and 3 are transparent to the third-party

Second-factor implementation can be of various types:

n Validation of a one-time password (OTP)

n Validation against an RSA token

The variables to be passed in the http header are detailed below:

Header Variables Description

IP_ADDRESS IP address of themachine where the client browser is running

FRAUD_ASSERTION_
SESSION_ID OAAM session ID for the logged-in session

CLIENT_HEADER Client header details from http request

Remote_Host Remote host IP from http request

User-Agent USER AGENT details from http request

Table 4–1 Variables

The Fatal-Exception error codes and their meanings are detailed below:

4 Security in API Development | 21

4.2 Invocation of API

Error Code Expected behavior by client, if applicable

21022 Challenge 2FA to customer

11021 Challenge 1FA to customer

Table 4–2 Error Codes

The figure below depicts the sequence for triggering a payment delay, in addition to triggering a second-factor
authentication sequence.

Figure 4–2 Third-party Integration for 2FA + Delay

This additional step is configured only for a few sensitive payment transactions. Such transactions are
delayed for a few hours and are sent to the fraud-administrator’s queue for a final go-ahead. If the work-item is
rejected at this stage, a reversal transaction is added and the payment is not sent out.

22 | Oracle Banking Enterprise Default Management Secure Development Guide

	Preface
	Audience
	Documentation Accessibility
	Organization of the Guide
	Related Documents
	Conventions

	1 About This Guide
	2 Overview
	3 Common Terms
	4 Security in API Development
	4.1 Credential Verification
	4.1.1 Sharing the token
	4.1.2 Preparing the token

	4.2 Invocation of API
	4.2.1 Establishing the context
	4.2.2 Establishing the user session continuity and detecting fraud

